National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Transmission of very slow electrons as a diagnostic tool
Frank, Luděk ; Nebesářová, Jana ; Vancová, Marie ; Paták, Aleš ; Mikmeková, Eliška ; Müllerová, Ilona
The penetration of electrons through solids is retarded by sequences of their interactions with the matter in which the electron changes its direction of motion and loses its energy. Inelastic collisions, the intensity of which reaches a maximum at around 50 electronvolts (eV) and drops steeply on both sides of this fuzzy threshold, are decisive for the penetration of electrons. Transmission microscopy (TEM or STEM) observes thin samples of tens to hundreds of nanometres in thickness by passing electrons of energies of tens to hundreds of kiloelectronvolts through them. The range below 50 eV has recently been utilized in the examination of surfaces with reflected electrons, where high image resolution is achieved thanks to the retardation of electrons close to the sample surface in the ´cathode lens´ . In this lens, the role of the cathode is played by the sample itself, biased to a high negative potential. This principle can also be utilized in the transmission mode with samples of a thickness at and below 10 nm. This method has recently been implemented and verified on graphene samples prepared by various methods. The results have made it possible to diagnose the continuity and quality of the graphene flakes. Furthermore, series of experiments have been performed involving the observation of ultrathin tissue sections with electrons decelerated to about 500 eV and less, where they provide an image contrast of the cell ultrastructure much higher than that provided by traditional microscopic modes.
Controlled structuring of self–assembled polystyrene microsphere arrays by two different plasma systems
Domonkos, Mária ; Ižák, Tibor ; Štolcová, L. ; Proška, J. ; Kromka, Alexander
In this study we present a successful manipulation of microspheres by reactive ion etching (RIE). A self-assembled monolayer close-packed array of monodisperse polystyrene microspheres (PM) with diameter of 471 nm was used as the primary template. The PM templates were processed in two different RIE systems: (i) capacitively coupled radiofrequency plasma (CCP) and (ii) dual plasma system which combines CCP and pulsed linear-antenna microwave plasma (PLAMWP). The influence of process conditions on the PM geometry was systematically studied by scanning electron microscopy (SEM). The process conditions were controlled by varying radiofrequency (RF) power, gas mixture (O2:CF4 ratio) and process duration.
Highly luminescent nanophosphors - new physics, technologies and applications
Nikl, Martin ; Čuba, V. ; Bárta, J. ; Jarý, Vítězslav
The application of radiation synthesis in the manufacturing nanopowders of binary and ternary oxide nanophosphors is reviewed. Technological routes are described: irradiation of specific solutions containing soluble metal salts and OH radical scavenger by UV or ionizing radiation results in the formation of finely dispersed solid phase which is separated from the solution and subsequently converted by further thermal treatment into crystalline nanopowders with typical dimension of grains of several tens of nanometers. Doped ZnO, Y2O3, Y3Al5O12, Lu3Al5O12 and Gd3(Ga,Al)5O12 nanophosphors were prepared and their luminescence and scintillation characteristics were measured. In the photoluminescence decay of doped garnets the distinct effect of nanosized grains was found consisting in the slowing-down of the decay due to the change of effective refractive index.
The optical spectra of carbon-based thin films measured by the photothermal deflection spectroscopy (PDS)
Remeš, Zdeněk ; Pham, T.T. ; Varga, Marián ; Kromka, Alexander ; Stuchlík, Jiří ; Mao, H.B.
Our photothermal deflection spectroscopy (PDS) setup allows to measure simultaneously the absolute values of the optical transmittance T, reflectance R and absorptance A spectra of thin layers on glass substrates in the spectral range from ultraviolet to near infrared light with the typical spectral resolution 5 nm in the ultraviolet, 10 nm in visible and 20 nm in the near infrared region. The PDS setup provides the dynamic detection range in the optical absorptance up to 4 orders of magnitude. Here we demonstrate the usability of this setup by comparing the optical absorbance on a series of the carbon layer and nanocrystalline diamond (NCD) thin layers deposited on glass substrates by using the magnetron sputtering and the microwave based surface wave discharge in linear antenna chemical vapor deposition (CVD) processes, respectively. The defect-induced localized states in the energy gap are observed in all carbon layers as well as in NCD.
Comparativ study on functionalization of NCD films with amine groups
Artemenko, Anna ; Kozak, Halyna ; Stuchlík, Jiří ; Biederman, H. ; Kromka, Alexander
Nanocrystalline diamond (NCD) films are considered as highly attractive material for biosensing due to its unique semiconducting properties. This can be achieved by modification of NCD films surface on molecular level. Typically chemical immobilization of biomoleculs requires the presence of active functional groups on the diamond surface. This was achieved by attachment of -NH2 functional groups on the surface of H- or O-terminated NCD surface via two plasma-based processes. The first process, deposition of thin amine containing polymer by RF magnetron sputtering of Nylon target in Ar/N2 gas mixture. The second process employs RF plasma treatment in NH3 for 10 minutes. Chemical derivatization (CD) XPS analysis revealed that polymeric coating exhibits a higher amount of amino groups than the diamond surface treated in NH3 RF plasma. Results of I-V measurements showed that surface conductivity of H-terminated NCD films was preserved only after the RF sputtering.
Electronic excitation energy transfer between quasi-zero-dimensional systems
Král, Karel ; Menšík, Miroslav
Electronic excitation energy transfer is studied theoretically within a prototype system of quantum dots using the excitonic representation of the electronic states of two quasi-zero dimensional subsystems, between which the excitation energy is transferred in a process treated as an irreversible kinetic phenomenon. The electron-phonon interaction is used to circumvent the energy conservation problem, especially when considering the uphill and downhill excitation transfer processes. The theory is studied upon utilizing a simplified model of two interacting quantum dots, both coupled to their environment. The theoretical approach is documented by numerical calculations. The results could be relevant to various cases of the electronic excitation energy transfer between quasi zero dimensional nanostructures.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.